

17-Jan-2000

17-Jan-2000

General Event Selection

□ Event Topology $\Rightarrow \pi^+, \pi^-, e^+$ and e^- with Good Vertex

Background Rejection

○ Photon Conversion $K_L \to \pi^+ \pi^- \pi^0 (\pi^0 \to 2 \gamma)$ with γ-conv. ⇒ $\pi^+ \pi^- \pi_D^0$ $K_L \to \pi^+ \pi^- \gamma$ with γ-conv. ⇒ $\pi^+ \pi^- e^+ e^-$

$$M_{ee}\!\geq\!4\,MeV/c^2$$
 and $N_{share}\!<\!8$

O Pion Momentum Blance

$$A_{+-} \equiv \frac{P_{\pi^{+}} - P_{\pi^{-}}}{P_{\pi^{+}} + P_{\pi^{-}}}$$

¶ Nuclear interaction event

 $\P \ \pi \! \rightarrow \! \mu \nu \text{ decay event}$

⇒ Large asymmetry in pion momentum

17-Jan-2000

Backgrounds from $K_L \to \pi^+ \pi^- \pi^0_D$ with missing γ Assumming existence of a photon with an arbitarary momentum P_{γ} \Box Define χ^2_D as $\chi_{\rm D}^2 \left(\vec{\mathsf{P}}_{\gamma} \right) \equiv \left(\frac{\mathsf{M}_{\rm ee\gamma} - \mathsf{M}_{\pi^0}}{\sigma_{\pi}} \right)^2 + \left(\frac{\mathsf{M}_{\pi\pi ee\gamma} - \mathsf{M}_{\rm K_{\rm L}}}{\sigma_{\rm K}} \right)^2 + \left(\frac{\theta}{\sigma_{\theta}} \right)^2$ O Choose \vec{P}_{γ} minimizing χ^2_D ${\rm O}~{\rm K_L} \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^0_{\rm D}$ origin $\Rightarrow \chi^2_D$ is expected to be small with an appropriate \overline{P}_{γ} Reconstructed $\pi^+\pi^-\pi_D^0$ events Events $\pi^+\pi^-\pi^0_{\rm D}$ MC 10^{3} E162 data 10^{2} 10 1 10¹ 3 2 1 4 0 5 6

Calculation of Branching Ratio

$$Br(K_{L} \to \pi^{+}\pi^{-}e^{+}e^{-}) = \frac{N(\pi^{+}\pi^{-}e^{+}e^{-})}{A(\pi^{+}\pi^{-}e^{+}e^{-})\cdot\eta(\pi^{+}\pi^{-}e^{+}e^{-})} \times \frac{1}{F(K_{L})}$$

A : Acceptance

 $\eta \,:\, \text{Efficiency}$

N : Number of observed events

 $F : K_L$ flux

$$\begin{split} &\mathsf{Br}(\mathsf{K}_{\mathsf{L}} \! \to \! \pi^{+}\!\pi^{-}\!\mathrm{e}^{+}\!\mathrm{e}^{-}) = \mathsf{Br}(\mathsf{K}_{\mathsf{L}} \! \to \! \pi^{+}\!\pi^{-}\!\pi^{0}_{\mathsf{D}}) \\ & \times \! \frac{\mathsf{A}(\pi^{+}\!\pi^{-}\!\pi^{0}_{\mathsf{D}})}{\mathsf{A}(\pi^{+}\!\pi^{-}\!\mathrm{e}^{+}\!\mathrm{e}^{-})} \times \! \frac{\eta(\pi^{+}\!\pi^{-}\!\pi^{0}_{\mathsf{D}})}{\eta(\pi^{+}\!\pi^{-}\!\mathrm{e}^{+}\!\mathrm{e}^{-})} \times \frac{\mathsf{N}(\pi^{+}\!\pi^{-}\!\mathrm{e}^{+}\!\mathrm{e}^{-})}{\mathsf{N}(\pi^{+}\!\pi^{-}\!\pi^{0}_{\mathsf{D}})} \end{split}$$

	$\pi^+\pi^-\pi^0_D$	π ⁺ π ⁻ e ⁺ e ⁻
Ν	12212 ± 110	13.5 ± 4.0
Α	$9.77 imes 10^{-4}$	$2.64 imes 10^{-3}$
η	0.0529	0.0723

 \Rightarrow Br(K_L $\rightarrow \pi^{+}\pi^{-}e^{+}e^{-}) = [4.4 \pm 1.3] \times 10^{-7}$

Summary of Systematic errors

	Source	Uncertainty
Accentance	K _L momentum spectrum	4.8%
Efficiency	Matrix element	3.9%
	Others	3.1%
Number of	Background subtraction	7.4%
Events	Nuclear interaction	3.6%
	Other contamination	1.4%
	$Br(K_L \rightarrow \pi^+ \pi^- \pi_D^0)$	3.1%
	Total	11.3%
	Statistical error	30%

 $Br(K_L \rightarrow \pi^+ \pi^- e^+ e^-) = [4.4 \pm 1.3 (stat) \pm 0.5 (syst)] \times 10^{-7}$

Summary & Conclusion \Box The decay mode $K_{I} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ O Theoretical interest : CP-violation phenomena $\bigcirc Br \sim 3 \times 10^{-7}$ (Prediction) Experiment conducted with KEK-E162 □ 15 candidates observed with 1.5 background level O Clear evidence of $K_1 \rightarrow \pi^+\pi^-e^+e^ \Box$ Normalization mode : $K_L \to \pi^+ \pi^- \pi^0_D$ ($\pi^0_D \to e^+ e^- \gamma$) O 12212 events with less than 1% B.G. $\Box Br(K_{L} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}) = [4.4 \pm 1.3(\text{stat}) \pm 0.5(\text{syst})] \times 10^{-7}$ \Rightarrow consistent with theoretical prediction and recent measurement at FNAL(KTeV) $Br = [3.2 \pm 0.6 \pm 0.4] \times 10^{-7}$ J. Adams et al., Phys. Rev. Lett. 80, 4123 (1998) based on 36.6 events We have established the decay mode $K_L \rightarrow \pi^+ \pi^- e^+ e^-$.