B Physics at CDF

Fumihiko Ukegawa (CDF Collaboration) University of Tsukuba, Japan

Third International Workshop on B Physics and CP Violation September 29 – October 1, 2003 National Taiwan University, Taipei, Taiwan

Introduction : *B* Physics at Tevatron/CDF Production rates are high

 $\sigma(e^+e^- \rightarrow b\overline{b}) \simeq 1$ nb at $\Upsilon(4S)$, 6 nb at Z^0

Tevatron Accelerator

- New 120/150 GeV Main Injector replaced Main Ring
 - Increased intensity of protons and antiprotons.
- Tevatron operates with 36 x 36 bunches
- Increased CM energy
 1.8 TeV to 1.96 TeV

Run II started in March 2001.

Tevatron Run-II weekly and total integrated luminosity

~220 pb⁻¹ on tape per experiment

CDF Run-II Detector

Many detector components are brand-new

- Tracking system
 - Silicon detectors
 - Main drift chamber
- FE electronics
- Trigger/DAQ
- Plug calorimeter
- Extended muon coverage
- TOF system

Retained good momentum resolution & lepton ID.

CDF Run-II Detector

Central Outer Tracker END WALL $\eta = 1.0$ HADRON CAL. 30 k sense wires SOLENOID END PLUG HADRON CALORIMETER $\sigma(p_T)/p_T = 0.0008 p_T (GeV/c)$ END PLUG EM CALORIMETER Relativistic rise dE/dx 1.0 COT Silicon detector 700 k channels, max 15 hits per track. 1.0 2.0 3.0 m New plug calorimeter AYER 00 SVX II E SILICON LAYERS To $|\eta| < 3.6$, electron ID TOF particle ID K/π separation to 1.5 GeV

30⁰

 $\eta = 2.0$

 $\eta = 3.0$

30

Muon coverage

To do *B* physics at hadron colliders, you need to trigger on *B* decays

Traditionally CDF relied on leptons :

• Single leptons (e, μ) $\overline{B} \rightarrow \ell^- \overline{\nu} X$ \overline{B}

• Di-leptons $(\mu\mu, e\mu)$ $B \rightarrow J/\psi X, J/\psi \rightarrow \mu^+\mu^-, \qquad c \psi J/ \rightarrow \ell^+\ell^$ $b \rightarrow \ell^- X, \bar{b} \rightarrow \ell^+ X'$ \overline{B} \overline{q} \overline{q} $\overline{K}, \overline{K}^*, ...$

- Mass resolution ~16 MeV/c².
- ~20% from *B* decays, others direct / $\chi_c \rightarrow J/\psi \gamma$.

CDF-II silicon detectors

<u>SVX II</u>

- Radii 2.5 cm to 11 cm
- 5 layers
- Double-sided, 90° and 1.2° stereo
- Main vertex detector

Intermediate silicon layers (ISL)

- 3 more layers at R = 20 29 cm
- Construction similar to SVX II
- Precision tracking to higher eta.
- Aid linking from COT to SVX.

Layer 00

- At radius ~1.6 cm, on beam pipe.
- Minimize multiple scattering effects.
- Single-sided.

Run-II Silicon Vertex Trigger : SVT

Use silicon information at the 2nd level of trigger

Typical trigger : two tracks above 2 GeV/c, $| d | > 120 \mu m$, $L_{xv} > 500 \mu m$.

- Find a track in the main tracker COT.
- Extrapolate toward the SVX.
- Find SVX hits along the road.
- Calculate impact parameter wrt the primary vertex (beam spot).
- Resolution ~50 μm for > 2 GeV/c.

Huge charm signals observed

More charm

$$D_s^+ \to \phi \pi^+, \ \phi \to K^+ K^-$$

D meson production cross-sections measured. Sub. to PRL (hep-ex/0307080) Search for $D^0
ightarrow \mu^+ \mu^-$

FCNC decay. Proceed via loop and box diagrams in SM.

CDF Run II Preliminary 3 $D^0 \rightarrow \mu^* \mu^-$ Search 0 events in the $\pm 2\sigma$ search window 2 1 0 1.8 1.85 1.9 1.95 $M_{\mu\mu}$ (GeV)

events/MeV

0 candidate observed, 1.7 BG expected.

$${\cal B}(D^0 o \mu^+ \mu^-) < 2.4 imes 10^{-6}$$
 (90% C.L.)

PDG 2002 : ${\cal B}(D^0 \to \mu^+ \mu^-) < 4.1 \times 10^{-6}$

Sub. to PRD, hep-ex/0308059

B physics : does the unitarity triangle close?

- $|V_{cb}|$ from $b \to c\ell\nu$, $|V_{ub}|$ from $b \to u\ell\nu$.
- $|V_{td}|$ from Δm_d , but large QCD uncertainties.
- Use ratio to partially cancel the uncertainties

$$\frac{\Delta m_s}{\Delta m_d} = \left| \frac{V_{ts}}{V_{td}} \right|^2 \frac{M_{B_s}}{M_{B_d}} \xi^2 \quad (\xi = 1.14 \pm 0.03 \frac{+0.13}{-0.02})$$
Present limit on Δm_s (95% C.L.)

$$\frac{\Delta m_s}{\Delta m_d} > \frac{13.1}{0.489} \Rightarrow \left| \frac{V_{td}}{\lambda V_{ts}} \right| < 1.1$$

hep-ph/0307039 S. Aoki et al. Run-II Di-muon data

Yield ~ 2 x Run I

State $X(3780) \rightarrow J/\psi \pi^+\pi^-$

CDF confirms Belle discovery

Mass : $3871.4 \pm 0.7 \pm 0.4 \text{ MeV}/c^2$ Width : narrow, consistent with resolution.

 $B^+ \to J/\psi K^+$

 $m(B^+) = 5279.32 \pm 0.68 \pm 0.94 \text{ MeV}/c^2$ $\tau(B^+) = 1.57 \pm 0.07 \pm 0.02 \text{ ps}$

Mode for $\sin 2\beta$.

Predict $\tau(B_s^0)/\tau(B^0) =$ 1.0 ± O(1%)

But expect $\Delta \Gamma_s / \Gamma_s \sim 0.1$.

This mode is dominated by CP-even eigenstate. Can exhibit different τ from flavor eigenstates, e.g. $\ell^- \bar{\nu} D_s^+$ and $D_s^+ \pi^-$.

Future : look for CP-violation \sim zero expected in SM, arg(V_{ts}).

Rare decays $B^0/B_s^0 \to \mu^+\mu^-$

- V_{td} for B^0 , V_{ts} for B^0_s
- Helicity suppressed.
- B.F. very small.

SM predictions for B.F.

- $B^0 \to \mu^+ \mu^- (1.5 \pm 1.4) \times 10^{-10}$
- $B_s^0 \to \mu^+ \mu^- (3.5 \pm 1.0) \times 10^{-9}$
- $B^0 \to e^+ e^-$ (3.4 ± 3.1) × 10⁻¹⁵
- $B_s^0 \to e^+ e^-$ (8.0 ± 3.5) × 10⁻¹⁴

Search for $B^0/B^0_s \to \mu^+\mu^-$

Some new physics models constrained.

B signals from SVT triggers : full reconstruction

Understand proper time resolution and flavor tagging

Theory :

To what extent does the f_B uncertainty cancel in the ratio ξ ? Does not seem as simple as we once thought...

What we wanted II : $B^0/B^0_s ightarrow h^+h'^-$

Hope to extract angle γ in a longer term (after Δm_s)

Even $B^+ \to \phi K^+$ is seen

 $\frac{\mathcal{B}(B^+ \to \phi K^+)}{\mathcal{B}(B^+ \to J/\psi K^+)} = (0.68 \pm 0.21 \pm 0.07) \times 10^{-2}$

Summary

CDF Run-II in progress since 2001 :

- Finally we are back in business.
- So far recorded 250 pb⁻¹, analyzed up to ~100 pb⁻¹
 surpassed Run-I total. More to come.
- Enhanced B physics capabilities :
 - has added silicon-based trigger, enabling to collect all-hadronic final states such as $B \rightarrow D \pi$.
 - lepton triggers remain valuable.
- Hope to collect ~2 fb⁻¹ in the coming few years, and to make significant measurements of B decays.
 Some are quite complementary to Belle/BaBar.

Plans

- Open and onium charm/bottom production.
- B^- , \overline{B}^0 , \overline{B}^0_s , Λ^0_b , B^-_c masses/lifetimes. Also $\Delta \Gamma_s$.
- Re-establish B^0 - \overline{B}^0 oscillations, calibrate flavor tagging.
- Measure $\sin 2\beta$.
- Rare decays, $B \to K^{(*)}\ell^+\ell^-$, $B_s^0/D^0 \to \mu^+\mu^-$.
- Measure Δm_s with $\bar{B}_s^0 \to D_s^+ \pi^-$.
- Measure CP violation in $B^0 \to \pi^+\pi^-$ and $B^0_s \to K^+K^-$. Angle γ to 10° ?
- Look for CP violation in $B_s^0 \rightarrow J/\psi \phi$, new phase in B_s^0 oscillations ??
- Angle γ from $\bar{B}_s^0 \to D_s^{\pm} K^{\mp}$???

Backup Slides follow

 $\bar{B} \rightarrow D\pi^-$ mass distribution from Monte Carlo

Structure below B mass understood from missing neutrals.

Probing angle γ (phase of V_{ub})

- B^0 $\pi^+ \pi^-$ once thought to be the mode for sin2(π - γ - β). (assuming *b u* tree dominance over penguin)
- CLEO finds much larger K⁻ π^+ and tiny $\pi^+ \pi^-$.
- Not just small rates, but also means penguin pollution. Relation to $sin(2\alpha)$ less clear.
- Strategies proposed, but are challenging experimentally...

New approach : R. Fleischer, Phys. Lett. B 459, 306 (1999). Throw in B_s^0 K^+K^- , measure asymmetries in both B^0 and B_s^0 .

In general, for a decay B^0 f (f = CP eigenstate) :

 $A_{CP}(t) = A^{dir} \cos(\Delta m t) + A^{mix} \sin(\Delta m t).$ A^{dir} : "direct" CP violation, A^{mix} : CP violation thru mixing. Experimentally, measure 4 A's from $B^{O} = \pi^{+} \pi^{-}$ and $B^{O}_{s} = K^{+} K^{-}$. Then extract β , γ and penguin and tree decay amplitudes. Angle γ (phase of $V_{\mu b}$) continued <u>Four CP asymmetries to measure.</u> $(\lambda = \sin \theta_c)$ • $A^{dir}(B^0 = \pi^+ \pi^-) = -2d \sin \theta \sin \gamma / (1 - 2d \cos \theta \cos \gamma + d^2)$ • $A^{\text{mix}}(B^0 \quad \pi^+ \pi^-) = [\sin 2(\beta + \gamma) - 2d \cos \theta \sin(2\beta + \gamma) + d^2 \sin 2\beta]$ / $[1 - 2d\cos\theta\cos\gamma + d^2]$ • $A^{dir}(B^0_s \quad K^+K^-) \sim 2(\lambda^2/d) \sin \theta \sin \gamma$ If no penguin, • $A^{\text{mix}}(B^0, K^*K^-) \sim 2(\lambda^2/d) \cos\theta \sin\gamma$ $A^{dir} = 0$ $(B^{\mathcal{O}}, B^{\mathcal{O}})$ $A^{mix} = sin2(\beta + \gamma) (B^{O})$ Four unknowns to extract : $A^{\text{mix}} = \sin(2\gamma)$ (B^{0}_{s})

- β , γ = angles of the unitarity triangle.
- d = ratio of penguin (P) to tree (T) decay amplitudes, $\theta = \text{phase of } (P/T')$ $d e^{i\theta} = \lambda |V| / (V + (1-\lambda^2/2) [P/(T+P)]$

 $d e^{i\theta} \equiv \lambda |V_{cb}/V_{ub}| / (1-\lambda^2/2) [P/(T+P)]$

Expect ~5 k B^0 $\pi^+ \pi^-$, ~10 k B^0_s $K^+K^ \rightarrow$ angle γ to ~10°.

TOF kaon identification

S/N improves by a factor of 20, while keeping 82% of signal.

CDF B_s Sensitivity Estimate

• Current performance :

hadronic mode only

- S=1600 events / fb⁻¹
- S/B = 2/1
- $-\varepsilon D^2 = 4\%$
- $-\sigma_t = 67 \text{ fs}$

2σ sensitivity for Δm_s =15ps⁻¹ with ~0.5 fb⁻¹ of data

- surpass the current world average
- With "modest" improvements
 - S=2000 / fb (improve trigger, reconstruct more modes)
 - S/B = 2/1 (unchanged)
 - $\varepsilon D^2 = 5\%$ (kaon tagging)
 - σ_t = 50 fs (event-by-event vertex + L00)

5σ sensitivity for Δm_s =18ps⁻¹ with ~1.7fb⁻¹ of data 5σ sensitivity for Δm_s =24ps⁻¹ with ~3.2fb⁻¹ of data

 $\checkmark \Delta m_s$ =24ps⁻¹ "covers" the expected region based upon indirect fits.

- This is a difficult measurement.
- There are ways to further improve this sensitivity...

Semileptonic B decay signals

 $\bar{B} \rightarrow \ell^- \bar{\nu} D^0 X$

 $\bar{B}^0_s \to \ell^- \bar{\nu} D_s^+ X$

D** mesons :

L = 0 : $J = S = 0, 1 \Rightarrow D, D^*$ L = 1 and S = 0, 1 : $J^P = 1^+, 0^+, 1^+, 2^+$

Spectroscopy of D mesons

