b-jet Energy Scale Using Z bb

宇宙史拠点実習I 説明会 – 06/19/08

A large sized Z^0 bb signal can in principle be used as a tool to:

measure specific energy scale of b-quark jets:

- → Reduction of uncertainty in b-JES helps all precision measurement of **top quark mass**
- improve b-jet energy resolution

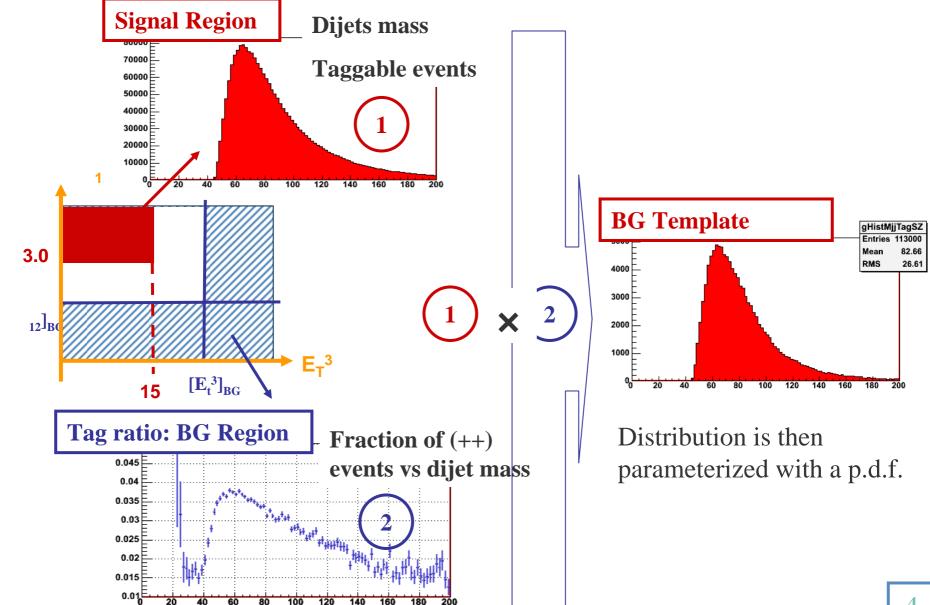
→ develop and test algorithm to improve b-jet energy resolution: important for low mass Higgs searches.

Analysis objective: extract a signal, measure data/MC b-JES *The applicability of the extracted scale will be subject of additional studies*

Unbinned Likelihood Fit

We use an unbinned likelihood procedure to measure the number of signal events and the b-JES scale factor in our data.

$$\begin{aligned} \mathcal{L}(SF) &= \mathcal{L}_{shape}(SF) \times \mathcal{L}_{(n_s + n_b)}, \text{ with} \\ \mathcal{L}_{shape}(SF) &= \prod_{i=1}^{N} \frac{n_s P_s(m_i; SF) + n_b P_b(m_i)}{n_s + n_b}, \text{ and} \\ \mathcal{L}_{(n_s + n_b)} &= \frac{e^{-(n_s + n_b)}(n_s + n_b)^N}{N!} \end{aligned}$$

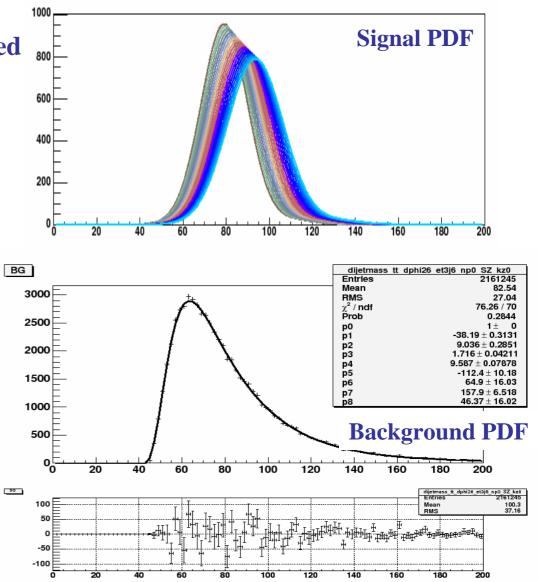

 n_s and n_b : numbers of signal and background events, $P_s(m_i,SF)$ and $P_b(m_i)$: signal and background p.d.f's.

We minimise $-\ln(L)$ to find best SF hypothesis. Statistical error is given by the difference between this SF and the SF at $-\ln(L_{max}) + 0.5$.

[

Data-driven BG Modeling

Probability Density Functions


Signal PDF

Dijet invariant mass shape is obtained from MC (pythia, Z bb + MB events).

We construct one single signal PDF which has **b-jet energy scale factor** (**SF**) as a parameter: *Ps(mjj,SF)*.

Parameterization of data-driven BG model

BG model is constructed from data and then parameterized.

Systematic Uncertainties

Systematic Source	b-JES factor	N signal events	
Background choice	+0.012 -0.006	+1391 -301	Sideband fit choice
Background statistics	0.0105	445	BG template shape (*)
Background correction	0.0050	36	BG correction method (*)
MC template	0.0027	177	Fit of original mass templates with signal PDF (*)
MC statistics	0.0020	62	Stat. of original template (*)
Total	+0.0170 - 0.0135	+1473 -570	

(*) pseudo-exp, assuming signal fraction of 2%, b-JES: 0.96, 0.97 and 0.98

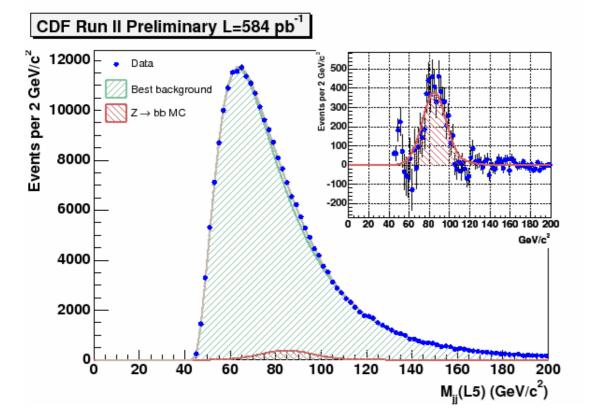
(*) pseudo-exp, assuming signal fraction of 2%, b-JES: 0.974

These uncertainties are related to the choice made in the MC generation and they are not to be included in our b-JES factor measurement.

Their effect is interesting to be measured though.

Source	b-JES factor	N signal events
Monte-Carlo ISR	0.0040	263
Monte-Carlo FSR	0.0116	111
Monte-Carlo PDF's	+0.0052 -0.0054	+617 - 574

Source	b-JES syst.	N_{sig} syst.
CTEQ6Mx	+0.0039 -0.0041	+358 - 277
MRST72/CTEQ5L	+0.0034	-414
MRST72/MRST75	-0.0034	+286
Total	+0.0052 -0.0054	+617 - 574



Result

We measured data/MC b-jet energy scale factor using Z bb reconstructed signal

Preliminary measurement gives:

b-JES = $0.974 \pm 0.011(\text{stat.}) \stackrel{+0.017}{_{-0.014}}(\text{syst.}) = 0.974 \stackrel{+0.020}{_{-0.018}}$ N_{sig} = 5674 ± 448(stat.) $\stackrel{+1473}{_{-570}}(\text{syst.}) = 5674 \stackrel{+1540}{_{-725}}$ events

Nexp = 4630 ± 727 events.

Reasonable agreement.

Goodness of fit: ²/NDF = 104/75

Redo the analysis with jet cone size 0.4

- ▶ The previous result were obtained using cone size 0.7.
- Many analyses (top, higgs, etc.) are using cone size 0.4.
- ► To apply Z->bbbar result to other analyses, we need **b-jet energy scale with cone size 0.4**.

All the tools are ready. We just need remake/recalculate:

- ▶ Ntuples \leftarrow Done by Y. Sudo.
- ► MC Templates
- ►BG Modeling
- ► Acceptance Study \leftarrow Done by Y. Sudo.

► Systematics